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Abstract:  In radiation damage research, copper, nickel, and their alloys are widely used model 
systems for face-centered–cubic (FCC) metals. The ground-states properties of the ordered and 
disordered alloys are studied by using the molecular dynamics (MD) and first-principles 
calculations. For copper-nickel alloys, the equilibrium properties have been predicted by large-scale 
atomic/molecular massively parallel simulator (LAMMPS), Abinit and WIEN2k, thermodynamics 
is calculated by LAMMPS and Abinit. In order to investigate the disordered alloys, special 
quasirandom structures (SQS) and fractional function are adopted in LAMMPS, and their 
capabilities are demonstrated to predict the properties of disordered alloys. For both the ordered and 
disordered alloys, the lattice constants in agreement with the Vegard's law are predicted and the 
bulk moduli present the deviations with respect to the experimental values; with the increasing 
weight concentration of nickel, the equilibrium volumes reduce and the bulk moduli increase. The 
calculated cohesive energy of copper and nickel are consistent with the experimental values; the 
cohesive energies of ordered alloys are predicted. The energies of formation of disordered alloys are 
always lower than those of ordered alloys. 

1. Introduction 
In the past decades, researchers have paid huge efforts to study the structure and theoretical 

models of the random (disordered) alloys (e.g. SQS), because one would like to develop a complete 
or substitutional structure and theoretical model for the disordered alloy. However, owing to 
uncertainty about atomic occupations in the crystal lattice, which is difficult to determine the 
positions of A and B atoms in a disordered alloy xx BA −1 , many problems are still existed in it, for 
instance, lowering the total energy of the disordered alloy in the calculation [1], only dealing with 
certain specific components of the disordered alloy [2], etc. 

2. Theory and methodology  
2.1. Disordered and ordered structures 

We employ the alloy theoretic automated toolkit (ATAT) code [3] to investigate all the possible 
configurations and generate the FCC-based four-, eight-, and 16-atom SQSs with the composition x 
= 0.25, 0.5 and 0.75 for the disordered alloys. In the MD simulations, large-scale atomic/molecular 
massively parallel simulator [4] is employed. In order to get the disordered (random) structures in 
LAMMPS, we set the atom type for a fraction of the selected atoms. As the calculated result is 
statistically close, the error control of the atom number is 1 or so under identical random number. In 
the case of the ordered structure, we mainly consider that three ordered alloys are Cu3Ni (L12), 
CuNi (L10), and CuNi3 (L12), respectively, and two elements being Cu and Ni (A1). 
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2.2. MD and first-principles calculations 
In the present work of MD simulations, Cu-Ni alloy potential is generated by the EAM database 

tool (Written by Xiaowang Zhou) based on the copper and nickel parameters [5]. Our first-principles 
calculations employ the Abinit code [6] with ion-electron interaction described by the projector 
augmented-paw (PAW) method [7]. For fitting the MD calculated cohesive energy versus lattice 
parameter to bulk modulus, second-order polynomial fit by the program gnuplot or the software 

Origin is used. According to the definition of bulk modulus B0, 
VdV

dPB −=0 . where P and V are 

pressure and volume of the unit cell, respectively. For the cubic unit cell,
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where N and a  are atom number and lattice constant of the unit cell, respectively. Thus, bulk 
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NB = , where 0a  is equilibrium lattice constant. In order to fit the first-

principles calculated energy-vs-volume data to Murnaghan equation of state (EOS), we use the 
program ev.x (Contributions by Eyvaz Isaev) in the Quantum ESPRESSO [8]. The equilibrium 
properties calculated by the above EOS include the equilibrium volume V0, bulk modulus B0, and 
its pressure derivative 0B′ . In the paper, we present the fitting results of lattice constants and bulk 
modulus of Cu and Ni in Table 1 with available experimental data. 

3. Results and discussions  
From Table 1, the lattice constants and bulk moduli fitted by polynomial and EOS for the FCC 

Cu and FCC Ni in comparison with experimental values [9-11] are summarized. It is apparent that the 
GGA (rather than LDA) describes the FCC Cu and FCC Ni very well. In first-principles calculation, 
lattice constants and bulk moduli calculated by the GGA potential are in better agreement with 
experimental values. Whereas in the MD calculation, lattice constants are in good agreement with 
experimental values, but its bulk moduli are not in good agreement with the corresponding 
experimental values. Hence, the GGA potential is used in first-principles calculation. 
Table 1. Lattice constants of FCC copper and FCC nickel calculated by molecular dynamics (MD) 
and first-principles, and then bulk moduli of FCC copper and FCC nickel fitted by polynomial and 

EOS, respectively, where the percent error between the calculated values and the experimental 
values are shown in the parentheses 

 Metal MD GGA LDA Experimental 
value 

Lattice constant 
(Angstrom) and 

error 

Cu 
(FCC) 

3.615 
 (0) 

3.651 
(1%) 

3.535 
(-2.2%) 3.615a 

Ni 
(FCC) 

3.520  
(0) 

3.529 
(0.26%) 

3.429 
(-2.6%) 3.520b 

Bulk modulus 
(GPa) and error 

Cu 
(FCC) 

129.8 
(-5.3%) 

130.7 
(-4.6%) 

178.6 
(30.4%) 137.0a 

Ni 
(FCC) 

218.6 
(17.5%) 

187.8 
(1%) 

242.1 
(30.2%) 186.0b 

a Reference 9. 
b References 10 and 11. 

3.1. Equilibrium properties 
The equilibrium lattice constants of copper and nickel by LAMMPS calculation in Fig. 1 are in 

line with the experimental values [12]. According to the Vegard's law, the lattice constants of the 
ideal mixing alloys can be written as NiCu axaxxa ⋅+⋅−= )1()( . By calculations, we find that our 
calculated lattice constants of the ordered alloys (see Fig. 1) agree well with the Vegard's law. But 
the calculated bulk modulus of copper and nickel are quite different from the experimental values 
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(see Table 2). 
The comparison of the cohesive energy of the pure metals with that of the alloys is needed in any 

prediction about the phase diagram of binary alloys. In MD calculation, the definition of the 
cohesive energy is a minimum of the crystal lattice energy. We calculate the cohesive energy of 
copper and nickel, whose corresponding values are -3.54 eV per atom and -4.45 eV per atom as 
presented in Fig. 1, while the cohesive energy of copper is -3.50 eV per atom in the experiment.  

Vacancy formation energy is defined by the following expression. cohrelaxv ENEE )1( −−= , 
where vE , relaxE , and cohE  express the vacancy formation energy, the crystal energy including N-1 
atoms after relaxation, and the cohesive energy, respectively; N is atom numbers of the unit cell in 
MD calculation. Our calculated vacancy formation energies of copper and nickel are 1.28 eV and 
1.63 eV, which are consistent with the corresponding calculated values [13] and experimental 
values [14, 15]. 
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Fig. 1. (Color online) The equilibrium lattice constant, the bulk modulus and the cohesive energy of 
copper, nickel and their ordered alloys by MD calculation and second-order polynomial fitting 
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Fig. 2.  (Color online) The lattice constant of different weight concentration calculated by 
LAMMPS. Red data from reference [16] 

We calculate the lattice constants of the random alloys of copper and nickel by LAMMPS in Fig. 
2. The lattice constant of the random alloys presents a downward trend with increasing nickel 
concentration. And compared with the experimental values [16] of the same nickel weight 
concentration, our calculated lattice constants of 9%, 26%, and 77% agree well, while the lattice 
constants of 42% nickel weight concentration has a small deviation. From Fig. 2, we can know that 
the lattice constants of the weight concentration of the random copper and nickel alloys are in good 
agreement with those of the corresponding weight or atom concentration of the ordered copper and 
nickel alloys (see Fig. 1). This can probably get an explanation from unlimited miscibility and 
relatively close lattice constants of copper and nickel. 

In Abinit calculation, the equilibrium volumes reduce with the increasing weight concentration 
of nickel whether its structure is the ordered or not, and inversely the bulk moduli increase with the 
increasing weight concentration of nickel as showed in Table 2, i.e. the larger the volume, the 
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smaller the bulk modulus. However, WIEN2k calculations under nonmagnetic states present the 
same trends as Abinit's in terms of the equilibrium volumes and bulk moduli as showed in Table 3. 
At the same time the equilibrium volumes calculated by Abinit are larger than by WIEN2k, whereas 
bulk moduli by WIEN2k are larger than by Abinit. The total energies calculated by WIEN2k higher 
than by Abinit are the best explanation. This is due to the fact that WIEN2k uses all-electron 
potential considering the contribution of core electrons to the total energy whereas pseudopotential's 
is not considered. However, the pressure derivatives do not present the same properties as the 
equilibrium volumes and bulk moduli. In WIEN2k calculation under nonmagnetic states, the 
equilibrium volume and pressure derivative of CuNi alloy (L10) are the smallest (see Table 3) 
compared with those of the other structures.  
Table 2. Together with the first-principles properties using the Abinit code at the ground state fitted 

by the Murnaghan EOS, including the equilibrium volume V0  (Ǻ3 per atom), bulk modulus B0 

(GPa), its pressure derivative 0B′ , and the equilibrium energy E0 (eV) 

Entry Name Formula V0 B0 0B′  E0 
1 A1 Cu 12.18 130.7 5.07 -1395.52 
2 A1 Ni 10.99 187.8 4.19 -3508.03 
3 L12 Cu3Ni 11.85 142.5 5.18 -7694.50 
4 L10 CuNi 11.48 159.5 4.55 -4903.47 
5 L12 CuNi3 11.27 170.9 4.92 -11919.48 
6 SQS-4 Cu3Ni 11.84 143.4 4.78 -7694.62 
7 SQS-4 Cu2Ni2 11.54 157.8 4.66 -9807.21 
8 SQS-4 CuNi3 11.25 172.7 4.65 -11919.84 
9 SQS-8 Cu6Ni2 11.84 143.7 4.94 -15389.25 

10 SQS-8 Cu4Ni4 11.54 159.2 3.37 -19614.41 
11 SQS-8 Cu2Ni6 11.25 173.2 5.11 -23839.67 
12 SQS-16 Cu12Ni4 11.84 144.7 5.49 -30778.51 
13 SQS-16 Cu8Ni8 11.53 160.4 3.71 -39228.83 
14 SQS-16 Cu4Ni12 11.25 173.2 5.23 -47679.35 

Table 3. Together with the first-principles properties using the WIEN2k code at the ground state 
fitted by the Murnaghan EOS, including the equilibrium volume V0 (Ǻ3 per atom), bulk modulus B0 

(GPa) and its pressure derivative 0B′  

Entry Name Formula State V0 B0 0B′  
1 A1 Cu NM 11.77 151.7 4.34 
2 A1 Ni NM 10.70 219.6 6.85 
   FM 10.78 214.9 3.96 

3 L12 Cu3Ni NM 11.48 165.6 3.08 
   FM 11.46 171.6 4.20 

4 L10 CuNi NM 11.30 194.3 1.31 
   FM 11.26 176.7 5.27 

5 L12 CuNi3 NM 10.92 202.3 6.08 
   FM 11.00 175.6 6.10 

6 SQS-4 Cu3Ni NM 11.43 165.2 5.46 
   FM 11.45 164.3 5.10 

7 SQS-4 Cu2Ni2 NM 11.17 172.8 7.15 
   FM 11.19 182.1 4.60 

8 SQS-4 CuNi3 NM 10.93 184.7 6.95 
   FM 11.04 191.2 3.01 

3.2. Thermodynamics 
Energy of formation is one of important basis that determine the stability of crystal structure. For 

ordered alloys, the energy of formation is given by )()()1()( 1 NixECuExNiCuEE xx
n
f −−−= − ,  where 

n
fE  corresponds to the energy of formation of each of the above five ordered structures, in units of 

eV/atom. For disordered alloys, their energy of formation can be obtained as the following 
expression [17] by using a random distribution for statistical averaging.  
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=
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4

0
)()(

n

n
fnf ExPxE , where )(xE f  is the energy of formation of disordered alloys and )(xPn  is 

the statistical weight. The weight expresses the probability that the n th short-range ordered 

structure appears in the alloy and can be represented as nn
n xx

n
xP −−








= 4)1(

4
)( .  

Therefore, for LAMMPS calculation, the energy of formation of the disordered alloys by above 
the method can be expanded as the following expression: xxxxxE f 07.036.042.013.0)( 234 ++−= .   
According to the expressions 7 and 10, we calculate the energy of formation by LAMMPS and 
Abinit for disordered alloys as shown in Figs. 3 and 4. The energies of formation of disordered 

xx NiCu −1  alloys are always lower than those of ordered xx NiCu −1  alloys (see Figs. 3 and 4). This 
trend indicates that the similar results are obtained by MD and first-principles calculations but the 
values calculated by Abinit are greater than by LAMMPS. 
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Fig. 3. (Color online) The energy of formation of the disordered alloys as a function of nickel 
concentration (by LAMMPS) 
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Fig. 4. (Color online) The energy of formation of the disordered alloys as a function of nickel 
concentration (by Abinit) 

4. Conclusion  
In order to investigate the disordered alloys, we demonstrate their capabilities to predict the 

properties of disordered alloys including equilibrium properties, and thermodynamics. For both the 
ordered and disordered xx NiCu −1  alloys, it is found in the present work that (i) the lattice constants in 
agreement with the Vegard's law are predicted and the bulk moduli present the deviations with 
respect to the experimental values; (ii) with the increasing weight concentration of nickel, the 
equilibrium volumes reduce and the bulk moduli increase, i.e. the larger the volume, the smaller the 
bulk modulus; and (iii) the calculated cohesive energy of copper and nickel are consistent with the 
experiment values; the cohesive energies of ordered 

xx NiCu −1
alloys are predicted. By calculating the 
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energies of formation of ordered xx NiCu −1 alloys, the gotten energies of formation of disordered 
alloys are always lower than those of ordered alloys. 

Acknowledgement 
Fujian province middle and young teacher education research project (No. JAT160303). 

References 
[1] WEI S H, FERREIRA L G, BERNARD J E,et al. Electronic properties of random alloys:
Special quasirandom structures [J]. Physical Review B Condensed Matter, 1990, 42 (15):9622.
[2] CONNOLLY J W D, WILLIAMS A R. Density-functional theory applied to phase
transformations in transition-metal alloys [J]. Physical Review B Condensed Matter, 1983, 27
(8):5169-5172.
[3] WALLEVAN de A. Multicomponent multisublattice alloys, nonconfigurational entropy and
other additions to the Alloy Theoretic Automated Toolkit [J]. Calphad-computer Coupling of Phase
Diagrams&Thermochemistry, 2009, 33 (2):266-278.
[4] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J].Journal of
Computational Physics, 1995, 117:1–19.
[5] ZHOUX W, JOHNSON R A, WADLEY H N G. Misfit-energy-increasing dislocations in
vapor-deposited CoFe/NiFe multilayers [J]. Physical Review B, 2004, 69 (14):1124-1133.
[6] TORRENt M, JOLLET F, BOTTIN F, et al. Implementation of the projector augmented-wave
method in the ABINIT code: Application to the study of iron under pressure [J]. Computational
Materials Science, 2008, 42 (2):337-351.
[7] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave
method [J]. Physical Review B, 1999, 59 (3):1758-1775.
[8] GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and open-
source software project for quantum simulations of materials. [J]. Journal of Physics: Condensed
Matter, 2009, 21 (39):395502.
[9] BALLUFFI R W. Vacancy defect mobilities and binding energies obtained from annealing
studies [J]. Journal of Nuclear Materials, 1978, 69-70 (69):240-263.
[10] WYCISK W, KNIEPMEIER M. Quenching experiments in high purity Ni [J]. Journal of
Nuclear Materials, 1978, 69-70 (69):616-619.
[11] STRAUMAL B B, PROTASOVA S G, MAZILKIN A A,  et al. Deformation-driven formation
of equilibrium phases in the Cu–Ni alloys [J]. Journal of Materials Science, 2012, 47 (1):360-367.
[12] LAMBRECHT W R, SEGALL B. Anomalous band-gap behavior and phase stability of c-BN-
diamond alloys [J].Physical Review B, 1993, 47 (47):9289-9296.
[13] KikuchiR.A theory of cooperative phenomena [J]. Physical Review, 1951, 81 (81):988.
[14] KIKUCHI R. Superposition approximation and natural iteration calculation in cluster variation
method [J]. Journal of Chemical Physics, 2003, 60 (3):1071-1080.
[15] SANCHEZ J M, FONTAINE de D. The fee Ising model in the cluster variation approximation
[J].Physical Review B, 1978, 17 (17):2926-2936.
[16] ZHENG J C, HUAN C H A, WEE A T S, et al. Ground-state properties of cubic C-BN solid
solutions [J]. Journal of Physics Condensed Matter, 1999, 11 (3):927.
[17] DONOHUE J. The structures of the elements [M]. New York: Wiley, 1974: 191–199.

372


	1. Introduction
	2. Theory and methodology
	2.1. Disordered and ordered structures
	2.2. MD and first-principles calculations
	3. Results and discussions
	3.1. Equilibrium properties
	3.2. Thermodynamics
	4. Conclusion
	Acknowledgement
	References



